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Abstract: Our former studies delivered a strong evidence that water indirectly treated with low-
temperature, low-pressure glow plasma of low frequency (GP) changed its structure depending on 
the atmosphere in which such treatment was performed (air, ammonia, and nitrogen) and on the 
time of the treatment (0 to 120 min). In every case, water of different physicochemical characteristics 
and interesting biological functions was produced. Therefore, the relevant studies were extended to 
treating deionized water with GP under methane. The resulting samples were characterized by 
means of ultraviolet/visible (UV/VIS), Fourier transformation infrared—attenuated total reflectance 
(FTIR-ATR), electron spin resonance (ESR) and Raman spectroscopies, differential scanning 
calorimetry (DSC), thermogravimetry, pH, conductivity, and refractive index. The generated 
samples of water had entirely different physicochemical properties from those recorded for water 
treated with GP in the air and under both ammonia and nitrogen. The treatment of water with GP 
under methane did not produce clathrates hosting methane molecules. Thermogravimetry 
delivered an evidence that the treatment with GP increased the aqueous solubility of methane. That 
solubility non-linearly changed against the treatment time.  

Keywords: methane clathrates; synthetic naftusya water; water macrostructure reconstruction  
 

1. Introduction 

In our recent paper, the structure and physicochemical properties of water treated with low-
temperature, low-pressure glow plasma of low frequency (GP) in the air [1] was presented. GP was 
developed in the proximity of the treated water. Under fixed parameters of the GP generation, the 
structure and physicochemical properties of the resulting water depended on the treatment time. In 
a series of subsequent papers, the benefits resulting from the use of that water were shown. Thus, 
that water stimulated growth and pathogenicity of entomopathogenic fungi used as biopesticides [2]. 
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Murawski et al. demonstrated the benefits of cryopreservation of ram [3] and boar [4] semen in such 
water. The barley malt quality could be improved when GP-treated water was applied [5]. Watering 
peppermint with GP-treated water had no essential effect on the yield of the essential oil and a plant 
crop yield, but the composition of the essential oil dramatically changed. The menthol content in it 
was distinctly lower and, simultaneously, the bactericidal properties of that oil increased. Several 
new components of that oil could be characterized. Bioaccumulation of cations and anions in leaves, 
stems, and roots also changed [6]. Several interesting applications of water treated with GP in contact 
with the air are presented in a newly published monograph [7]. Applications presented therein were 
based on unpublished research reports dealing with plant cultivation and animal breeding.  

These findings prompted us to study the treatment of water with GP under ammonia. The 
treatment of hard water with GP under ammonia protected precipitation of a scale in kettles, heat 
exchangers, and pipe-lines. On heating of so treated hard water, a separated fine precipitate did not 
agglomerate into a hard scale [8]. Recently, a specific kind of water was presented [9] when water 
was treated with GP under oxygen-free nitrogen [9]. Treating water with GP in contact with the air 
resulted in the formation of aqueous clathrates including excited singlet oxygen molecules. Water 
treated with GP under nitrogen contained aqueous clathrates with various free radical species of 
molecular nitrogen. Their nature depended on the treatment time. The effect of such water upon the 
growth and composition of essential oil of basil (Ocinum basilicum L.) [10] and another study upon 
the growth of cress [11] prompted us to study a treatment of water with GP under methane, following 
identical conditions of the GP treatment, as applied in former studies.  

Under normal atmospheric pressure, methane poorly solubilizes in water and its amount in g/kg 
distilled water ranges from almost 0.04 to 0.0235 at 0 °C and 20 °C, respectively [12]. As the pressure 
elevates, that solubility increases. That solubility depends also on the water salinity [13]. In the Solar 
System as well as in the floor of oceans aqueous methane clathrates CH4·5.75H2O or 4CH4·23H2O are 
formed, respectively, as a result of low temperature and high pressure [14–17]. 

Since GP deteriorates the macrostructure of water, the treated water solubilizes various 
compounds better and its smaller clusters more readily permeate biological membranes. It makes the 
GP-treated water a good vector for its solutes [1–7]. Hence, one might anticipate that the treatment 
water with GP would increase the aqueous solubility of methane.  

Spas in Iwonicz Zdrój, Rymanów Zdrój (Poland), and Truskawiec (Ukraine) are known for 
mineral water, so-called “naftusia” (naphtusya). Apart from some minerals (about 0.82 mg/L), it also 
contains hydrocarbons penetrating the water from underground deposits of petroleum located 
nearby [18–20]. Naftusia is recommended for curing several health disorders [21,22]. Thus, among 
the potential applications of water treated with GP under methane, its therapeutic value could be 
taken into account. 

2. Materials and Methods 

2.1. Materials  

2.1.1. Water 

Commercially available deionized water of pH 7.02 ± 0.04, electromotive force (EMF) = 351.8 ± 
0.3 mV (glass versus calomel electrode at 25 °C) and conductivity γ = 0.444 ± 0.004 mS/cm was used. 

2.1.2. Methane 

Methane from the municipal gas supply system of Częstochowa (Poland) was used. It contained 
95.5% of methane, 3.816% ethane, 0.216% propane, 0.031% i-butane, 0.030% n-butane, 0.06% i-
pentane, 0.04% n-pentane, 0.06% C6+ hydrocarbons, 0.605% N2, and 0.030% CO2. 
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2.2. Methods 

2.2.1. Treatment of Water with GP  

Through the deionized water a stream of methane was bubbled for 15 min. Its flow rate 
depended on the volume of the water sample. In case of the 200 mL sample, the rate of 10 mL/min 
was maintained. That water (200 mL) was placed in 250-mL glass bottles and free space over the 
liquid was additionally filled with methane. The whole system was placed in the metallic chamber at 
the distance of 5 cm from the plasma generator (Scheme shown in a previous paper [9]) and exposed 
to GP for 5, 15, 30, 60, and 90 min. Plasma of 38 °C was generated at 5 × 10−3 mbar, 800 V, 50 mA, and 
10 KHz frequency. The produced water was stored at ambient temperature in 100-mL closed teflon 
containers [23].  

2.2.2. pH  

The measurements at 25 °C for all samples (both control samples and those treated with GP for 
5 to 90 min) were performed in triplicates with a laboratory multifunction meter CP-501 (Elmetron, 
Zabrze, Poland) equipped with a HYDROMET, Type ERH-11 combined glass-calomel electrode. 

2.2.3. Conductivity  

Estimations were performed at 25 °C with an ELMETRON CPC-505 instrument (Elmetron, 
Zabrze, Poland) equipped in an ELMETRON EC-60 sensor. The estimations were taken in triplicates 
for both control samples and these were treated with GP for 5 to 90 min).  

2.2.4. Refractive Index  

Lab refractometer RL from PZO Warsaw, Poland was used. Measurements performed at 22 °C 
were triplicated. 

2.2.5. Differential Scanning Calorimetry (DSC) 

Differential scanning calorimeter DSC 2500 (TA Instruments, New Castle, DE, USA) was used. 
Multipoint calibration (Hg, In, Sn, Bi, Zn, and CsCl) was involved. Analyzed samples (12 mg) were 
hermetically sealed in alumina capsules. The capsules were then punctured and cooled down to −20 
°C with the rate of 10 °C/min followed with heating to 140 °C with the same rate at 50 mL/min 
nitrogen flow rate. Characteristic temperatures and enthalpy of transitions (Tonset, Tmid, Tend, and ∆H) 
were determined with Proteus Analysis (Netzsch, Selb, Germany) software. Experiments were 
duplicated.  

2.2.6. Thermogravimetry 

DSC 2500, instrument manufactured by TA Instruments, New Castle, DE, USA was used. The 
sample was heated from +20 to 120 °C with the rate of 10 °C/min at the 50 mL/min nitrogen flow.  

2.2.7. Fourier Transformation Infrared–Attenuated Total Reflectance (FTIR-ATR) Spectra  

The FTIR-ATR spectra of the film were recorded following the method previously described [1]. 
Thus, the measurements were performed in the range of 4000–700 cm−1 at resolution of 4 cm−1 using 
a Mattson 3000 FT-IR (Madison, WI, USA) spectrophotometer. That instrument was equipped with a 
30SPEC 30° reflectance adapter fitted with the MIRacle ATR accessory from PIKE Technologies Inc., 
Madison, WI, USA.  

2.2.8. Electron Spin Resonance (ESR) Spectra  

The spectra as 1st derivative were recorded at room temperature employing an instrument 
constructed at Wroclaw Technical University. The range of the X-band (ν = 9.5 GHz, λ = 3.158 cm) 
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was employed at the 20–25 dB attenuation and 2048 s swiping time. An EPR controller software 
designed for taking the EPR spectra was applied. For samples saturated with nitrogen, g ≈ 2.16. 

2.2.9. Ultraviolet/Visible (UV/IS) Absorption Spectra  

The spectra were recorded with a Thermo Scientific Evolution 220 (Thermo Fischer Scientific, 
USA) spectrophotometer in the wavelength range of 190–1100 nm, in a quartz gas tight cell of 10-mm 
path length. The method was described previously [1]. The instrument was set on automatic 
measuring mode at medium scan speed and 1.0 nm slit width.  

2.2.10. Raman Spectra  

The spectra were taken with a Perkin-Elmer MPF44A Fluorescence Spectrophotometer 
(Waltham, MA, USA) equipped with a xenon lamp (excitation at 330 ± 1 nm and slit 2.0 nm) and a 4-
mL quartz gas tight cell, following the method described in previous reports [1,5,9]. The spectra were 
recorded at 22 °C for control distilled water stored in contact with the air, control distilled water 
saturated with methane, and distilled water saturated with methane exposed to GP for 5, 15, 30, 60, 
90, and 120 min.  

3. Results and Discussion 

The effect of the treatment of water with GP upon its macrostructure was well documented by 
spectral measurements.  

The UV absorption spectra invariantly demonstrated the band at 220 nm which resulted from 
the 1A1 → 1B1 transition [24] (Figure 1). In the spectrum of water saturated with methane prior to the 
treatment with GP, that band of absorbance of about 2.4 a.u. showed a vibrational structure resulting 
from simultaneous low transmissions in both light beams. The GP treatment for 5 min elevated the 
maximum of that band up to about 2.6 a.u., accompanied by a subtle 10-nm upshift. The spectrum of 
the water treated for 120 min perfectly fitted the same pattern of that band. Prolonged treatment led 
to a decrease in the intensity of that band to an extent providing a less intensive shoulder of the 
Reyleigh scattering band with its maximum below 200 nm. The intensity of that shoulder depended 
on the treatment time. It decreased in the order: treated for 60 min > for 30 min > for 90 min. That is 
along the increasing ordering and rigidity of the macrostructure. 

 
Figure 1. Ultraviolet/visible (UV/VIS) absorption spectra of water treated with glow plasma of low 
frequency (GP) for 0 to 120 min. 
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The FTIR-ATR absorption spectra (Figure 2) demonstrated an increase in the intensity of the νOH 

band centered around 3250 cm−1. That increase reflected some deterioration of the macrostructure 
releasing an increasing number of the hydroxyl groups not engaged in the formation of 
intermolecular hydrogen bonds. Differences in the absorbance of that band in the spectra of the GP-
treated water were fairly subtle, but an insight in these spectra showed that it decreased as a 
consequence of the treatment time in the order: 120 min > 5 min > 30 min > 60 min > 15 min > 90 min. 
Absorbance of the νOH around 1650 cm−1 changed in a similar order. Absorbance of the bands which 
could be assigned to the C–H vibrations and bending in the molecules of methane, that is, the bands 
at ~ 2900, 1400, 1200, and 1100 cm−1 decreased with the treatment time. Again, the decrease was not 
linear against the treatment time, which meant that methane was somehow incorporated into the 
water macrostructure. 

Table 1 demonstrates that removal of dissolved air by blowing it with methane increased the 
number of the water molecules vibrating asymmetrically. The GP treatment of water saturated with 
methane for the first 5 min increased their number, then gradually fairly regularly decreased, against 
the treatment time, their number. Solely, there was practically no effect of the treatment time upon 
the number of asymmetrically vibrating water molecules treated for 5 and 15 min.  

 
Figure 2. Fourier transformation infrared—attenuated total reflectance (FTIR-ATR) spectra of 
deionized water GP treated under methane for 0 to 120 min. 

Figure 3 presents an approach to the Gaussian distribution of the FTIR-ATR spectra presented 
in Figure 2.  
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Figure 3. Notation of the bands taken under consideration in the Gaussian distribution of the νOH 
band. 

Table 1. Results of the Gaussian distribution of the OH in FTIR spectra of deionized water GP-treated 
under methane for 0 to 120 min. 

Samplea  A(3494) B(3265) C(1633) A/B A/C B/C 
W 0.0642 0.3266 0.1633 0.197 0.393 2.000 
W0 0.1062 0.2542 0.1424 0.418 0.746 1.785 

W05 0.1776 0.2748 0.1662 0.646 1.069 1.653 
W515 0.1657 0.2666 0.1617 0.622 1.025 1.649 
W1530 0.1658 0.2808 0.1662 0.590 0.998 1.690 
W3060 0.1539 0.2818 0.1623 0.546 0.948 1.736 
W6090 0.1517 0.2753 0.1607 0.551 0.944 1.713 

W90120 0.1380 0.3004 0.1696 0.459 0.814 1.771 
aDeionized control water. 

Regardless of the treatment time of water with GP, its ESR spectra demonstrated no free radical 
signals (Figure 4). 

 
Figure 4. Electron Spin Resonance (ESR) spectra of the samples of water saturated with methane. The 
spectra of such water after the GP treatment regardless the GP treatment time are identical. 
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In the case of water treated with GP in the air [1], under ammonia [8], and nitrogen [9], based on 
the Raman spectra, the formation of aqueous clathrates of the corresponding gases was postulated. 
The appearance of the bands centered around 400 nm (5303 cm−1 Raman shift) following the intensive 
band at around 370 nm (3276 cm−1 Raman shift) was the criterion for the clathrate formation.  

Except for the water treated for 15 min, the Raman band of the treated water located at 373 nm 
(Figure 5) was not followed by any longer wavelength band. In that exceptional spectrum, a longer 
wavelength shoulder could be observed. The corresponding Cp value was another sign of a certain 
specificity of so treated water.  

The intensity of the 373 nm band of the scattering spectrum (the corresponding Raman shift of 
3494 cm−1) was sensitive to the GP treatment time and that dependence on the treatment time was 
non-linear. The intensity of that band decreased in the order: W0 > W120 > W30 > W15 > W90 > W60.   

 
Figure 5. The scattering spectrum included Raman band of water treated with GP under methane for 
0 to 120 min. Excitation by 330 ± 1 nm/ 2 nm slit at 22 °C. Notation: 1, non-treated water saturated 
with methane (control); 2–6, water saturated with methane treated for 120, 30, 15, 90, and 60 min, 
respectively. 

Saturation with methane and GP treatment did not influence the original pH and conductivity 
of water. Similarly, the refractive index (RI = 1.3314) remained unchanged. DSC measurements 
revealed that GP had a minor effect on temperature of the principal endothermal effect of water 
saturated with methane (Figure 6 and Table 2). The temperature measured at maximum was always 
lower than that for untreated water. It could be interpreted as a result of a transformation of primary 
macrostructure into another one containing objects of smaller size more readily leaving the liquid 
phase. Similarly as in the spectral measurements presented above, DSC measurements also pointed 
to a specific structure of water treated with GP for 15 min. The corresponding DSC graph (Figure 6) 
demonstrated an additional shoulder located at about 103 °C.  



Water 2020, 12, 1638 8 of 11 

 
Figure 6. Differential scanning calorimetry (DSC) diagrams of the water saturated with methane 
treated with GP for 0 to 120 min. Speed: 10 °C/min. 

Table 2. Characteristics of the differential scanning calorimetry (DSC) curves. 

Samplea 
Temperature  
at Peak (°C)  

Heat Flow 
Intensity (W/g)  

Heat of  
Vaporization (J/g) 

Standardb 100.00c n.d.d  2257.0c 
WM0 96.11 −10.26 2057.1 
WM5 94.81 −10.48 2050.3 
WM15 94.05 −9.82 2049.9 
WM30 89.37 −11.20 2132.2 
WM60 88.86 −11.23 2154.1 
WM90 94.11 −10.00 2048.4 

WM120 90.11 −10.26 2106.3 
aNumbers following W (water saturated with methane) correspond to the time (min) of the GP 
treatment; bDeionized, methane-free, non-treated water; cData for pure water at 1013 mbar; dNot 
determined. 

The increase in the endothermal effect did not parallel the temperature changes. The sample 
treated for 60 min exhibited the most endothermal effect. Depending on the treatment time it declined 
in the order: 

standard > non-treated water > 90 > 5 > 15 > 120 > 30 > 60 min 
Non-linear changes of both parameters against the treatment of the samples with GP reflected 

building different, treatment time-depended macrostructures. Such effects were also observed in our 
studies on water treated with GP in the air [1], ammonia [8], and nitrogen [9], as well as computations 
performed for corresponding aqueous clathrates [25].  

The thermodynamic data for GP-treated deionized water saturated with methane (Table 3) also 
non-linearly changed against the treatment time. That showed that the treatment for 15 and 60 min 
required the lowest and the highest specific heat, Cp, of the thermal transition, respectively. The 
saturation of the water with methane significantly increased the enthalpy of the thermal transition 
already prior to the treatment with GP. The treatment influenced also the enthalpy in the manner 
irregular against the time. The lowest enthalpy was noted for the water treated for 30 min. The 
resulting preparation (WM30) disposed with the highest entropy (∆S).  
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Table 3. Thermodynamic data for deionized water saturated with methane (WM) treated with GP for 
0 to 120 min. 

Samplea 

(Immediately) Cp ∆H ∆S 

 (J/g.K) (J/g) (J/g.K) 
W 34.377 −1770 4.7690 

WM0 35.837 −1346 3.6266 
WM5 32.980 −1451 3.9095 

WM15 26.107 −1487 4.0065 
WM30 33.935 −1845 4.9710 
WM60 36.378 −1765 4.7555 
WM90 31.559 −1788 4.8175 
WM120 32.847 −1742 4.6935 

aW—control pure deionized water. 

Treatment time-dependent enthalpy values (∆H) declined in the same order as did entropy 
values, that is: 

30 > 90 > methane-free water > 60 > 120 > 15 > 5 > 0 min 
Thermogravimetric measurements threw a light on the solubility of methane in water depending 

on the treatment time (Figure 7). The thermogravimetric curves did not provide any signal related to 
the temperature-dependent evolution of methane from particular samples. Instead, clear differences 
in the sudden loss of the weight above 100 °C could be seen and the magnitude of that loss for 
depending on their GP treatment time increased in the order: 

90 > 30 > 5 > 60 > 120 > 15 > 0 min 
It meant that until the boiling point of those samples was reached the samples lost consecutively 

46.0, 24.7, 22.5, 20.6, 19.5, 16.0, and 15.5% of their weight. 

 
Figure 7. Thermograms of water treated with GP for 0 to 120 min measured after 10 days.  
Speed 10 °C/min. 

Certainly, the observed weight loss could not be directly related to the loss of dissolved methane. 
The order shift  

15 > 120 > 5 > methane-free water > 90 > 0 (non-treated water) > 60 > 30 min 
reflected, first of all, the degree of deterioration of the water macrostructure. 
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However, this order did not fall in line with the order of the thermal effects observed in the DSC 
measurements (Figure 5 and Table 1). The orders of the treatment time-dependent thermal effects  

15 < 0 < 5 < 120 < 90 < 30 < 60 
and their intensity 

30 < 60 < 0 < 90 < 5 < 120 < 15 
differed from one another. Such incompatibility of those orders supported the assumption that the 
aqueous solubility of methane changed depending on the GP treatment time. These orders could 
speak in favor of arresting methane molecules in some niches of the water macrostructures. 

4. Conclusions 

Removal of the air dissolved in water by blowing with methane increased the number of the 
water molecules vibrating asymmetrically. The GP treatment of water for over 5 min gradually fairly 
regularly against the treatment time decreased their number against the treatment time. The formed 
macrostructure of water presented a dynamic system which developed smaller size units more 
readily leaving the liquid phase. The process involved much higher energy for defeating forces 
binding these newly formed structures with the surrounding macrostructure. The most remarkable 
changes of the macrostructure were observed in water treated with GP for 15 min. The pattern of the 
Raman spectrum suggested the formation of specific aqueous clathrates of methane.  
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