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Abstract: Nanometals constitute a rapidly growing area of research within nanotechnology. Nanosil-
ver and nanogold exhibit significant antimicrobial, antifungal, antiviral, anti-inflammatory, anti-
angiogenic, and anticancer properties. The size and shape of nanoparticles are critical for determining
their antimicrobial activity. In this study, silver and gold nanoparticles were synthesized within
a hyaluronic acid matrix utilizing distilled water and distilled water treated with low-pressure,
low-temperature glow plasma in an environment of air and argon. Electron microscopy, UV-Vis and
FTIR spectra, water, and mechanical measurements were conducted to investigate the properties
of nanometallic composites. This study also examined their microbiological properties. This study
demonstrated that the properties of the composites differed depending on the preparation conditions,
encompassing physicochemical and microbiological properties. The application of plasma-treated
water under both air and argon had a significant effect on the size and distribution of nanomet-
als. Silver nanoparticles were obtained between the range of 5 to 25 nm, while gold nanoparticles
varied between 10 to 35 nm. The results indicate that the conditions under which silver and gold
nanoparticles are produced have a significant effect on their mechanical and antibacterial properties.

Keywords: nanometals; nanosilver; nanogold; composites; antimicrobial activity; plasma water;
hyaluronic acid

1. Introduction

Nanotechnology utilises the singular properties and behaviour of matter on a small
scale, enabling the manipulation of material at the atomic level and paving the way for
innovation in many areas of science and technology [1]. Due to its potential for significant
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breakthroughs, nanotechnology is an expanding field that has a vast impact on both our
society and the future [2]. Nanotechnology has found diverse applications in several
sectors of the economy, such as medicine, pharmaceuticals, transport, cosmetology, food,
electronics, construction, and agriculture [3,4]. Its widespread use is attributed to its
vast benefits and multifunctional capabilities, making it a crucial area of research and
development for industries seeking to improve their products and processes.

Nanometals are a captivating area of research in nanotechnology. Various types of
metal nanoparticles, such as iron, silver, gold, nickel, titanium, platinum, etc., have been
developed and characterized by scientists [5]. The distinctive properties and potential
applications of nanosilver and nanogold have prompted intensive research in numerous
scientific fields. Nanosilver, also known as NanoAg, is highly valued for its potent antibac-
terial, fungicidal, antiviral, anti-inflammatory, anti-angiogenic, and anticancer properties.
Consequently, silver nanoparticles (AgNPs) are extensively employed in medicine for
various purposes such as dressings, bandages, antimicrobial creams, and disinfectants [6].
According to the literature, antimicrobial nanomaterials are often referred to as ‘nanoantibi-
otics’ and are regarded as one of the most promising methods for preventing or controlling
the growth and spread of microbes and infections [7–10]. Nanosilver is highly chemically
stable and resistant to corrosion, which allows it to maintain its properties even in highly
acidic or alkaline environments [11]. Meanwhile, nanogold (nanoAu) can be adjusted to
provide a variety of functions and applications. It can be functionalised by attaching a range
of ligands, biological molecules, or polymers to the nanoparticle surface. Gold nanopar-
ticles (AuNPs) have multiple applications as a drug carrier, imaging probe, catalyst, or
sensor material [12–14]. Nanogold specifically exhibits amplified surface activity, chemical
reactivity, and modified optical properties compared to larger gold particles [15]. Addi-
tionally, nanogold is highly biocompatible, which allows it to be well tolerated by living
organisms [16]. It has broad applications in biomedical fields such as medical diagnosis [17],
cancer treatment [18], drug transportation [19], and bioimaging [20,21].

The properties outlined create nanosilver and nanogold materials suitable for various
applications. Consequently, one of the main areas of interest for nanotechnology researchers
is the advancement of these nanometals in biopolymer carriers. Such research includes the
development of active/intelligent packaging [22–24], dressings [25], and new formulations
of cosmetics, including creams, shampoos, and conditioners [26–28]. Nanoparticles of
metals embedded within polymer carriers are a captivating field of study, allowing for
the advanced properties of metals at the nanoscale to merge with the biocompatible and
environmentally sustainable nature of polymers. The polymers used as matrices for syn-
thesising these nanoparticles can be categorised according to their origin: either as natural
or synthetic polymers. Synthetic polymers, which are derived from non-renewable sources,
cannot be naturally degraded and exacerbate environmental pollution [29]. Additionally,
synthetic polymers may trigger an immune response and lead to allergic or toxic reactions
within the body. By contrast, biopolymers—natural polymers—possess qualities such
as biodegradability, renewability, and abundance in nature, making them a sought-after
choice in multiple fields [30,31]. However, the production of nanowires in polysaccharide
matrices poses several technological challenges. Regulating nanoparticle dimensions and
morphology, maintaining stability, and ensuring uniform dispersion in the polysaccharide
matrix are essential factors for acquiring nanostructures in polysaccharides. These compo-
nents are crucial in the design of advanced materials incorporating nanostructures. Metal
nanoparticles have undergone extensive investigations regarding their antimicrobial prop-
erties. The size and shape of these nanoparticles are paramount factors in determining their
antimicrobial activity [32–34]. For instance, decreasing the size of metallic nanoparticles
is predicted to enhance their antibacterial activity because of the notably larger surface
area of the smaller nanoparticles [35]. Metal-based nanoparticles are known to have non-
specific mechanisms of bacterial toxicity, which not only complicates the development
of bacterial resistance, but also broadens the spectrum of antibacterial activity [36]. An
antimicrobial assay employed fungi and bacteria, demonstrating the compounds’ stability,
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varying shape, size, and electronegative (capping) properties, culminating in enhanced
antimicrobial functionality [37]. The size and shape of the metallic nanoparticles can be ma-
nipulated by altering the reducing agents, reaction conditions (including temperature and
pH), environment, and carrier [34,38,39]. Various studies have investigated the impact of
low-temperature plasma on the structure of water in the presence of different atmospheric
gases such as air [40], nitrogen [41], methane [42], oxygen [43], ammonia [44], and carbon
dioxide [45]. Additionally, the microbiological aspects of low-temperature plasma-treated
water have also been explored [46–49]. Our previous investigation demonstrated that the
application of plasma water impacted the polydispersity of nanoparticles and the opti-
cal characteristics of starch-based bionanocomposites [50]. Thus, the utilization of water
treated with this method poses a promising research avenue.

Hyaluronic acid, among many natural polymers such as chitosan, sodium alginate,
cellulose, and starch, is renowned for its exceptional chemical, physical, and biologi-
cal properties. Hyaluronic acid is a foundational component found in all living organ-
isms [51] and consists of the repeating disaccharides β-(1,4)-glucuronic acid and β-(1,3)-N-
acetylglucosamine, which are repeatedly linked by alternating β-1,3- and β-1,4-glycosidic
bonds [52]. In the human body, it forms several structures such as the extracellular matrix
of connective tissues, blood vessel walls, cartilage, joint fluid, and the vitreous body of
the eye. Moreover, it plays a role in the inflammatory response, angiogenesis, and tissue
regeneration [53]. This polymer exhibits biocompatibility, biodegradability, and antimicro-
bial activity, which are additional advantages [54]. Additionally, the scientific literature
suggests that hyaluronic acid with a higher molecular weight can demonstrate antioxidant
activity, which in turn helps protect against free radicals [55]. Hyaluronic acid also offers
excellent potential for modification due to its chemical structure containing various poly-
meric side groups such as hydroxyl, acetamide, and carboxyl groups [56]. As a result, this
polymer provides an outstanding matrix for a variety of modifications, contributing to its
overall versatility [57]. With the boundless potential of nanotechnology and the escalating
desire for cutting-edge materials, bionanocomposites based on sodium hyaluronate and
containing silver and gold nanometals demonstrate potential as innovative, biodegradable,
and biocompatible substances for biomedical use [58].

Metal nanoparticles, including both silver and gold, were synthesised and charac-
terised in a matrix composed of sodium hyaluronate polysaccharide in the context of this
investigation. In this study, metallic nanoparticles were produced using methods consis-
tent with the concept of ‘green chemistry’. Water was utilized as a solvent and treated
with a low-temperature, low-pressure plasma in an atmosphere of air and argon. This
enabled us to demonstrate the significant impact that even minor environmental modifi-
cations can have on the properties of the nanocomposites obtained (morphology, particle
distribution, and physicochemical and microbiological properties). The findings yielded
biodegradable nanocomposites that can rival synthetic materials in terms of properties,
thus paving the way for a multitude of applications. This will greatly aid the cause of
environmental conservation.

2. Results and Discussion

Figure 1a,b shows hydrogels and films containing silver nanoparticles. We can observe
a slight difference in intensity and hue but no significant visual differences. This indicates
that the reduction occurs in a very similar way regardless of the type of solvent (plasma-
treated or not, air, or argon). Figure 2a,b, on the other hand, shows hydrogels and films for
gold nanoparticles. In this case, we observe a clear difference in intensity and colour. This
shows that the type of solvent plays an important role in shaping gold nanoparticles. Even
with the naked eye, aggregates of gold particles can be seen in the AuDAPW sample (as in
the resulting hydrogel as in the film).
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t

Figure 1. Hydrogels (a) and films (b) containing silver nanoparticles.

t

Figure 2. Hydrogels (a) and films (b) containing gold nanoparticles.

To ascertain the shape and consistency of the nanoparticles produced, UV-Vis spectra
were conducted on the resulting composites. Figure 3a displays the spectra for composites
that contained silver nanoparticles. A distinctive absorption band was noticeable for
silver nanoparticles at wavelengths of 400.7, 403.2 nm for AgDW and AgDPW composites,
and 405 nm for AgDAW and AgDAPW. The use of plasma water had almost no impact
on the size of the silver particles. Figure 3b displays the UV-Vis spectra representing
the gold nanoparticles, which verified the original observations. An absorption band at
approximately 536 nm was observed for the AuDW, AuDPW, and AuDAW samples, while
a broad band in the 500–750 nm range denoted broad particle distribution and aggregation
in the AuDAPW sample. Numerous studies [59–63] indicate the successful application of
UV-Vis spectroscopy for detecting the existence of metallic nanoparticles. Furthermore,
these studies demonstrate that the shape and position of the absorption band in the UV-Vis
spectra of such particles are reliant on their size, shape, and distribution. It is therefore
essential to consider these factors when analysing the spectra. Generally, an increase
in the size of nanoparticles results in the shift of the absorption band towards longer
wavelengths. Conversely, an increase in polydispersity is indicated by a broadening of the
band. These findings partially align with our prior research [50], in which we identified
the beneficial outcome of air-based plasma treatment on the shape and dimensions of the
nanoparticles obtained. Nonetheless, for gold nanoparticles attained in water-based plasma
under an argon atmosphere, there was a distinct rise in polydispersity, a definite increase
in nanoparticle size, and aggregation. These findings were additionally validated through
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electron microscopy. Our research on the structure of plasma-treated water under argon,
which is currently being prepared for submission, suggests the creation of argon/water
clathrates that may affect nanoparticle aggregation.ff

 

(a) (b) 

−

−

−

−

t

Figure 3. UV-Vis spectra of composites containing silver (a) and gold (b) nanoparticles.

The FTIR-ATR spectra in the spectral range of 750–4000 cm−1 for the films containing
Hyal and AgNPs are shown in Figure 3. The vibrations ranging from 3600–2980 cm−1 are
related to the N-acetyl side chain’s hydrogen-bonded O-H and N-H stretching vibrations.
A set of overlapping bands with moderate intensity appear around 2910 cm−1, resulting
from the C-H stretching vibrations. The stretching modes belonging to the planar carboxyl
groups in hyaluronate are accountable for the 1620 and 1410 cm−1 bands, respectively, cor-
responding to asymmetric (C=O) and symmetric (C-O) vibrations [64]. We did not observe
any significant changes in the spectrum of the composites compared to that of hyaluronic
acid, which might have been due to the very low concentration of metallic nanoparticles.

Figure 4 illustrates the scanning electron micrographs of silver nanoparticles (AgDAW)
(a) and gold nanoparticles (AuDAW) (b) that were recorded in backscattered mode to
highlight chemical composition variation. A greater brightness contrast is indicative of
higher atomic numbers or heavier elements.

ff

−

−

−

−

t

Figure 4. FTIR-ATR spectra of hyaluronic acid and composites containing silver nanoparticles.

The SEM (Figure 5) and TEM (Figure 6) analysis confirms our successful incorporation
of both AuNPs and AgNPs within the hyaluronic acid matrix. This study provides evidence
of uniformly distributed silver and gold nanoparticles of relatively uniform size on the
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hydrogel matrix, with AuNPs (varying from 10 to 35 nm) appearing slightly larger than
AgNPs (5 to 25 nm). The size was significantly affected by the atmosphere during plasma
treatment and by the use of plasma-treated water. Additionally, the presence of metallic
NPs was confirmed through EDS analysis (Figure 7).

ff

  

(a) (b) 

tFigure 5. SEM images of AgDAW (a), AuDAW (b) recorded in backscattered electron (BSE) mode.

ff

t

 

Figure 6. Electron microscopy images of AgDW (A), AgDPW (B), AgDAW (C), AgDAPW (D),
AuDW (E), AuDPW (F), AuDAW (G), and AuDAPW (H) obtained with a transmission electron
microscope detector.

ff

t

 

Figure 7. EDS analysis of the AgDPW (A) and AuDPW (B) composites.
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We also observed that the polymer’s microarchitecture changed after residing for
several hours in the specimen chamber under vacuum (9 × 10−5 Pa) (Figure 8). With time,
chain-like structures emerged on the initially smooth surface, signifying alterations in the
polymer structure due to a prolonged exposure to high vacuum.

−

 

 

(a) (b) 

ff

t
ff ˂

ff

ff

Figure 8. Comparison of low-magnification (LM) SEM images of ‘fresh’ AuDW (a) and AuDW
exposed to high vacuum (b) for several hours.

This phenomenon is likely to be a result of the dehydration of the hydrogels, lead-
ing to the reorganisation of their molecular structure and consequent stiffening of the
material [65,66].

The lowest water content was determined in AgDPW and AgDW composites, below
20%. In the other samples, the values exceeded 20% (Table 1).

Table 1. Water content in composites.

Sample Water Content (%)

AgDW 17.62 ± 0.33 d

AgDPW 15.22 ± 0.57 e

AgDAW 21.27 ± 0.08 c

AgDAPW 21.43 ± 0.00 c

AuDW 24.96 ± 1.36 b

AuDPW 21.54 ± 0.47 c

AuDAW 20.90 ± 0.44 c

AuDAPW 27.98 ± 1.49 a

Values are expressed as mean ± SD. The same superscript letters in each column demonstrate a lack of significant
difference between values (p < 0.05).

Table 2 shows the opacity and colour parameters of the composite surfaces. Opacity
is a characteristic that indicates the level of the light impermeability of a substance. The
greater the value, the lower the transparency of the material and the higher its resistance to
UV rays. The presented samples exhibited high opacity, and the nanocomposites with Ag
were more resistant to UV than samples with Au. The transparency of the nanocomposites
was unaffected by the type of water employed. Light-sensitive substances and foods require
packaging with strong UV-blocking properties. The possibility of using the nanocomposites
in packaging can have a positive effect on products with high light sensitivity. This
assumption was confirmed by the colour parameters. The parameter L* of the tested
nanocomposites was in the range of 37.84–61.66. The L* component describes the brightness
of the colour from 0 to 100, where the maximum value indicates the brightest colour [67].
The values obtained testify to the significant darkness of the samples obtained. The
nanocomposites with Au (AuDW, AuDPW, AuDAW, and AuDAPW) were characterized
by higher brightness than composites with the addition of Ag (AgDW, AgDPW, AgDAW,
and AgDAPW). In the case of the samples with AgNPs, the value of the a* component was
positive (a* > 0), which indicated the dominance of the red colour. Samples with Ag were
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characterized by a significantly higher proportion of the red colour than those with Au,
whose a* parameter indicated an equal proportion of red and green. The b* component
represents the proportion of blue or yellow in the colour. Based on the data, it can be
seen that AgNP samples were characterized by the predominance of yellow shades, as the
values of this parameter were positive. The AuNP samples showed the opposite effect: the
values of the b* parameter were negative, indicating a larger share of blue (b* < 0).

Table 2. Colour of the surface of the films.

Sample Opacity L* (D65) a* (D65)

AgDW 12.29 ± 0.10 a 37.84 ± 0.93 g 9.13 ± 0.39 d

AgDPW 11.17 ± 0.77 b 44.17 ± 0.89 e 16.26 ± 1.08 b

AgDAW 12.04 ± 0.33 a 43.24 ± 0.74 f 13.96 ± 1.02 c

AgDAPW 12.02 ± 0.19 a 43.54 ± 0.45 e,f 17.20 ± 0.45 a

AuDW 7.96 ± 0.31 c 59.65 ± 0.99 b 1.83 ± 0.07 g

AuDPW 7.30 ± 0.24 d 53.32 ± 0.93 d 3.57 ± 0.43 f

AuDAW 6.92 ± 0.15 d,e 61.66 ± 0.71 a
−0.13 ± 0.05 h

AuDAPW 6.48 ± 0.10 e 56.12 ± 0.48 c 6.85 ± 0.53 e

Values are expressed as mean ± SD. The same superscript letters in each column demonstrate a lack of significant
difference between values (p < 0.05).

The thickness of the composites obtained and their mechanical properties are shown
in Table 3. Based on the data, it can be seen that the film showed thickness in the range
of 0.045–0.063 mm. Slight variations in thickness were observed between the composites
despite the fact that the same amount of film-forming solution was poured onto the trays.
This may have been due to the solid content enrichment in the samples [58,67]. There were
visible effects of the type of metal presence in the matrix. Statistical analyses confirmed
that the mechanical strength of nanocomposites containing Ag metal was on average
70% higher than nanocomposites containing AuNPs. The results indicate that the Ag
nanocomposites obtained were mechanically stronger than the commonly used low density
polyethylene (LDPE) films (16.5 MPa) and oriented polypropylene (OPP) (50.7 MPa),
comparable with polyvinylidene chloride (PVCD) (65.6 MPa), but weaker than polyester
(PE) (81.6 MPa) [68]. There were no statistically significant differences in the elongation at
break between samples.

Table 3. Mechanical properties of the films obtained at 25 ◦C and 55% humidity.

Sample Thickness (mm) TS (MPa) EAB (%)

AgDW 0.062 ± 0.014 a,b 59.15 ± 8.46 c 3.67 ± 0.90 a

AgDPW 0.063 ± 0.006 a 74.05 ± 8.98 a 2.87 ± 0.33 b

AgDAW 0.047 ± 0.004 d,e 69.53 ± 7.08 a,b 2.89 ± 0.39 b

AgDAPW 0.045 ± 0.004 e 66.93 ± 4.83 b 3.22 ± 0.47 a,b

AuDW 0.061 ± 0.010 a,b 46.48 ± 6.25 d 3.33 ± 0.21 a,b

AuDPW 0.058 ± 0.007 a,b,c 36.27 ± 2.81 e 3.45 ± 0.17 a,b

AuDAW 0.052 ± 0.003 c,d 30.65 ± 2.71 e 3.64 ± 0.22 a

AuDAPW 0.054 ± 0.008 b,c,d 45.08 ± 3.34 d 3.17 ± 0.58 a,b

Values are expressed as mean ± SD. The same superscript letters in each column demonstrate a lack of significant
difference between values (p < 0.05). TS—tensile strength; EAB—percent elongation at break.

Although it is impossible to imagine the modern world without antibiotics, their
excessive use in human and veterinary medicine, and in animal husbandry, has signifi-
cantly contributed to the development and spread of drug resistance in microorganisms.
Sublethal doses of antibiotics exert selective pressure on bacteria, promoting mutations
and not allowing susceptible strains to survive and continue to transmit antimicrobial
resistance [69]. This phenomenon significantly limits the possibilities and effectiveness
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of classic antibiotic therapy. The main animal pathogens contributing to the spread of
drug resistance and posing a threat to humans include Klebsiella, Proteus, Pseudomonas,
and Staphylococcus aureus (including methicillin-resistant S. aureus) [70]. Impaired wound
healing associated with bacterial infections is common in both humans and animals. The
formation of biofilms by pathogenic bacteria is the main factor impeding wound healing;
it can cause inflammation and, in critical cases, can lead to the amputation of affected
limbs or even death. Preventing biofilm formation by pathogenic bacteria is therefore of
key therapeutic importance [71]. For the above reasons, new, effective, inexpensive, and
non-toxic antimicrobial substances, which could be an alternative to antibiotics, are being
sought. The antimicrobial potential of silver and gold nanoparticles, as well as plasma-
activated water (PAW), have been observed [72–74]. In this experiment, we examined the
antimicrobial efficacy of the composites incorporating silver and gold nanoparticles that
were synthesised in various environments.

The antimicrobial activity of different foils was tested on four pathogenic and poten-
tially pathogenic strains of bacteria isolated from the skin and wounds of humans and
animals. The bacterial taxa included Gram-positive S. aureus and Gram-negative Klebsiella,
Proteus, and Pseudomonas spp. The results of the readouts (means of triplicate measure-
ments) are shown in Table 4. The growth of all the bacterial strains was inhibited by the
experimental variants, and the statistical analysis showed that growth inhibition varied
significantly between the examined variants and bacterial species/genera (p < 0.05). The
strongest bactericidal properties, expressed as the largest growth inhibition zone diameter
was observed for both AgDAPW and AuDAPW (plasma-treated distilled water saturated
with argon; Table 4 and Figure 9). What can be seen in Table 4 and Figure 10 is that
silver particles appeared to be more effective against Gram-negative Klebsiella, Proteus,
and Pseudomonas than against S. aureus, and the effect was the opposite in the case of gold
particles (i.e., growth inhibition caused by gold particles was stronger in the case of S. aureus
than in the case of Gram-negative strains, Table 4 and Figure 10). Similarly, Ermolaeva
et al. [72] examined the bactericidal effects of non-thermal argon plasma and observed that
Gram-negative bacteria were more susceptible to plasma treatment than Gram-positives,
suggesting cell wall thickness as one of the factors causing these differences. In general, the
mechanisms of plasma-activated water (PAW) include the acidic condition, which plays
a key role in the bactericidal effect of PAW, and high redox potential, which has been
reported to disrupt the membrane integrity of microorganisms [75]. In their research on the
impact of PAW on E. coli, Wang et al. [75] utilized a proteomic approach and found that
the treatment led to a noteworthy increase in the oxidative stress defence protein and acid
stress chaperone. PAW treatment led to a significant increase in the expression of conserved
outer membrane lipoprotein, outer membrane porin protein, Omptin family outer mem-
brane protease OmpT, and outer membrane protein X. This implies that PAW can cause
damage to different membrane structures of E. coli [75]. The expression of the DNA repair
protein, which is essential for the health and survival of organisms, was significantly down-
regulated after PAW treatment. Also, phosphotransferase expression was down-regulated,
resulting in reduced intracellular carbohydrate transport and phosphorylation, which may
reduce the ability of E. coli to cope with nutritional stress or stress caused by physical and
chemical factors. The varying effect of silver and gold nanoparticles against Gram-positive
and Gram-negative bacteria has also been observed by, e.g., Elbehiry et al. [73] and Gouyau
et al. [74]. Elbehiry et al. [73] examined the antibacterial effects and resistance induction
of silver and gold nanoparticles in S. aureus associated with mastitis. Even though the
antibacterial effects of AgNPs and AuNPs against S. aureus were comparable, AuNPs
less frequently induced the resistance of this bacterium than AgNPs. Gouyau et al. [74]
examined the potential antibacterial activity of 12 nm gold and silver nanoparticles against
S. aureus and E. coli with very weak antibacterial results from gold nanoparticles against
both species, no activity of AgNPs against S. aureus, and strong antibacterial activity against
E. coli.
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Table 4. Growth inhibition zones (mm) for bacterial strains as a result of the application of composites
containing Ag and Au NPs.

Genus/Species
Sample

Klebsiella Proteus Pseudomonas S. aureus

AgNPs

AgDW 28 37 38 25
AgDPW 29 36 35 23
AgDAW 28 37 35 27

AgDAPW 30 38 40 27

mean 37 28.75 37 25.5
standard dev. 2.45 0.96 0.82 1.91

CV (%) 7 3 2 8

AuNPs

AuDW 25 15 26 29
AuDPW 25 14 27 29
AuDAW 22 12 22 25

AuDAPW 28 16 30 30

mean 26.25 25.25 14.25 28.25
standard dev. 3.30 2.06 1.71 2.22

CV (%) 13 8 12 8

 

t

Figure 9. Growth inhibition caused by the AgNPs (AgDW, AgDPW, AgDAW, and AgDAPW marked,
respectively, from 20 to 23) and AuNPs (AuDW, AuDPW, AuDAW, and AuDAPW marked, respec-
tively, from 24 to 27), against Pseudomonas spp. (top) and Proteus spp. (bottom).
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Figure 10. Mean growth inhibition zones (mm) caused by the application of films containing different
experimental variants of AgNPs and AuNPs particles. The results are the means of the three replicates.

In summary, the combined measures of plasma-activated water saturated with ar-
gon both in AgDAPW and AuDAPW proved to have the most significant antibacterial
effects. The effect varied between the silver and gold particles, with silver being more effec-
tive against Gram-negative bacteria and gold being more effective against Gram-positive
S. aureus.

3. Materials and Methods

3.1. Materials

The following chemicals were utilized for producing the nanocomposites: high-
molecular-weight hyaluronic acid (Aquajuv CT) with a molecular weight of 0.8–1.0 MDA;
AgNO3 (Sigma-Aldrich, Poznań, Poland, 99.99%); HAuCl4·H2O (Sigma-Aldrich, 99.9%);
D-(+)-xylose (Sigma-Aldrich, Poznań, Poland); and Argon Premier UN1006 (product code
16806) in the tank (100% purity) was purchased from Air Products Sp. z o.o. (Siewierz,
Poland). None of the chemical reagents had been subjected to prior purification before
being used in the experiments.

3.2. Methods

3.2.1. Preparation of Plasma-Treated Water

Plasma water (DPW) was prepared following the method described in previous
studies [40,41]. Distilled water (DW) (2000 mL) was placed in a glass volumetric flask,
which was then positioned in the chamber of the reactor [41,76]. The solution was exposed
to Glow Plasma for 30 min, where plasma of 38 ◦C was generated at 5 × 10−3 mbar, 600 V,
50 mA, and 280 GHz frequency. Plasma-treated argon-saturated distilled water (DAPW)
was obtained via exposure to Glow Plasma for 30 min; argon-saturated distilled water
(DAW) was obtained by passing a jet of argon at 10 litres per minute at 0.15 MPa for 2 h
through 2000 mL of DAW.

The water produced was stored in sealed Teflon containers.

3.2.2. Hyaluronic Acid Hydrogel Preparation

A 2% solution, weighing 200.0 g, was prepared by weighing 2.0 g of hyaluronic acid on
an analytical balance (Radwag, Białystok, Poland) and adding 198.0 millilitres of distilled
water. The mixture was stirred using a magnetic stirrer (Heidolph RZR 2020, Heidolph
Instruments GmbH & Co. KG, Schwabach, Germany) until it formed a clear gel.

These steps were identically replicated with plasma-treated distilled water (DPW),
argon-saturated distilled water (DAW), and argon-saturated distilled water that was subse-
quently treated with plasma (DAPW).
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3.2.3. Preparation of Ag and Au Nanoparticles

To the hyaluronic acid hydrogels (200.0 g) obtained in the previous section, we added
10.0 mL of AgNO3 solution (0.0100 M) and 6.0 mL of 4% xylose solution (as a reducing
agent). We stirred the resulting mixture on a magnetic stirrer (Heidolph RZR 2020, Heidolph
Instruments GmbH & Co. KG, Schwabach, Germany) for 5 h. The resulting nanosilver
suspension in the hyaluronic acid matrix was then cooled to room temperature and applied
to 120 × 120 mm plastic dishes in an amount of 80.0 g, before being left to dry. The resulting
composites were stored in sealed dishes. Four samples were obtained depending on the
type of water used. The samples were labelled accordingly: AgDW, AgDPW, AgDAW,
and AgDAPW.

To the hyaluronic acid hydrogels (200.0 g) obtained in Section 3.2.2, we added 2.6 mL
of HAuCl4 solution (0.0100 M) and 2.0 mL of 4% xylose solution (as a reducing agent).
We stirred the resulting mixture on a magnetic stirrer (Heidolph RZR 2020, Heidolph
Instruments GmbH & Co. KG, Schwabach, Germany) for 5 h. The resulting nanogold
suspension in the hyaluronic acid matrix was then cooled to room temperature and applied
to 120 × 120 mm plastic dishes in an amount of 80.0 g, before being left to dry. The resulting
composites were stored in sealed dishes. Four samples were obtained depending on the
type of water used. The samples were labelled accordingly: AuDW, AuDPW, AuDAW,
and AuDAPW.

3.2.4. Water Content

Water content was determined according to the Krystyjan et al. [77] procedure. The
composites were cut into rectangular specimens (2 × 2 cm2) and weighed in an analytical
balance to obtain the initial weight of the sample (M1). The specimens were then sub-
jected to drying in an oven at 70 ◦C for 24 h, with the initial dry mass (M2) subsequently
determined gravimetrically.

The water content of the composites was calculated according to Equation (1),
as follows:

Water content (%) = (M1 − M2)/M1 × 100 (1)

3.2.5. Opacity

The UV impermeability of the films was assessed by exposing rectangular film samples
to 600 nm light absorption in a Helios-Gamma 100–240 UV/V spectrophotometer [77].
The test cell of the spectrophotometer directly held the film samples, while the empty cell
acted as a reference. The opacity of the films was then ascertained by using Equation (2)
as follows:

Opacity = A600/x (2)

where A600 represents the absorption at 600 nm and x is the thickness of the film expressed
in millimetres; the analyses were conducted in five separate replicates.

3.2.6. Surface Colour Measurements

Surface colour was measured using Konica MINOLTA CM-3500d equipment from
Konica Minolta Inc. in Tokyo, Japan. A 30 mm diameter window was utilized with reference
to the D65 illuminant/10◦ observer. The results were expressed using the CIELab system,
with the following parameters determined: L* (L* = 0 black, L* = 100 white), a*—proportion
of green colour (a* < 0) or red (a* > 0), and b*—proportion of blue (b* < 0) or yellow
(b* > 0) [77]. The measurements were taken on a standard white background, and the
experiment was repeated five times for accuracy.

3.2.7. Thickness Measurement

Composite thickness was measured using a micrometre with a 0.001 mm resolution,
catalogued under number 805.1301 (Sylvac SA, Crissier, Switzerland). The sample thickness
was obtained as the average of five measurements taken from different locations within the
gauge length area [78].
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3.2.8. Mechanical Properties of the Composites

The dried materials obtained were subjected to conditioning inside desiccators at
25 ◦C and 55% relative humidity (RH). The conditioning was performed by using mag-
nesium nitrate-6-hydrate saturated solutions for 48 h before analysis. The samples were
prepared according to standards [79] and were determined using the TA-XT plus texture
analyser (Stable Micro Systems, Haslemere, UK). The films were then cut into strips of
35 × 6 mm2 and placed into holders. The holders were initially separated by 20 mm with a
grip separation rate of 2 mm/min. To calculate the tensile strength (TS), the maximum force
at the film’s rupture was divided by its cross-sectional area. Elongation at the break was
expressed as a percentage (EAB) by dividing the elongation at rupture by the initial gauge
length and multiplying by 100 [78]. The average values of 10 replications were reported.

3.2.9. UV-Vis Absorption Spectrophotometry

The UV-Vis absorption spectra for the composites were obtained by utilizing a Shi-
madzu 2101 (Shimadzu, Kyoto, Japan) scanning spectrophotometer within the 300–800 nm
range. The procedure involved situating the film fragments in a 10 mL quartz cuvette, with
an empty cuvette employed as the reference point.

3.2.10. FTIR-ATR Spectrophotometry

The FTIR-ATR spectra of the composites were analysed with a MATTSON 3000 spec-
trophotometer (Madison, WI, USA). The range analysed was from 4000 to 700 cm−1 with
a resolution of 4 cm−1. The spectrophotometer was equipped with a 30SPEC 30 Degree
Reflectance adaptor (MIRacle ATR, PIKE Technologies Inc., Madison, WI, USA).

3.2.11. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS)

Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS)
analysis were carried out with the aid of a JEOL JSM-7500F microscope (JEOL, Tokyo,
Japan) coupled with an AZtecLiveLite Xplore 30 system (Oxford Instruments, Abingdon,
UK). Before the analysis, the samples underwent a coating process involving a 20 nm layer
of Cr using a K575X Turbo Sputter Coater (Emitech, Ashford, UK). A scanning electron
microscope was equipped with a transmission electron microscope (TEM) detector. Samples
for TEM analysis were prepared by drop-coating 10 µL of the sample on carbon-coated
200 mesh copper (100) grids (TAAB Laboratories, Aldermaston, Berkshire, UK).

3.2.12. Isolation and Identification of Tested Microorganisms

Swab samples were taken from wounds and lesions on the skin and bodies of humans
and animals. The samples were cultured on selective and chromogenic media to distinguish
and identify bacterial strains of the commensal skin microbiota, pathogens, and potential
pathogens. Columbia Agar with Sheep Blood Plus (Oxoid, Cheshire, UK) and Baird-Parker
agar (Oxoid, Basingstoke, UK) were utilized to distinguish and identify Staphylococcus
aureus (grey to black colonies with a clear halo on BP agar, white colonies with haemolysis
on CA, incubated for 24–48 h at 37 ± 1 ◦C). UTI agar Plus (Oxoid, Cheshire, UK) was
utilised to isolate and identify Gram-negative pathogens, including Proteus, Klebsiella, and
Pseudomonas by incubating for 24–48 h at 37 ±1 ◦C. Proteus presented clear colonies with a
brown halo, Klebsiella produced purple colonies, and Pseudomonas colonies were clear and
colourless. After initial identification, the chosen bacterial colonies, consisting of Gram-
positive (Staphylococcus aureus) and Gram-negative (Klebsiella, Proteus, and Pseudomonas)
bacteria, were subcultured and utilized for the microscopic scrutiny of Gram-stained slides.
Subsequently, the taxonomic position of the selected bacterial strains was validated using
MAL-DI-TOF (matrix-assisted laser desorption/ionization-time of flight) mass spectrometry.

3.2.13. Antimicrobial Activity of Tested Agents

Antimicrobial activity was assessed on four bacterial isolates, namely Gram-positive
S. aureus and Gram-negative Klebsiella, Proteus, and Pseudomonas. Antimicrobial activity
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was assessed on four bacterial isolates, namely Gram-positive S. aureus and Gram-negative
Klebsiella, Proteus, and Pseudomonas. The bacterial cultures were transferred into sterile
saline solutions to obtain 0.5 MacFarland suspensions, which were then streaked onto
Mueller–Hinton agar (Biomaxima, Lublin, Poland). Technical abbreviations were explained
when first used. The foils were sterilised in UV light for 30 min. We cut 10 × 10 mm
squares with surface-sterilised scissors and then applied them to the surface of bacterial
cultures. Following an incubation period of 18–24 h at 37 ± 1 ◦C, the growth inhibition
zones around the foil fragments were measured to obtain the results. As the applied foils
were square, two diameters were read, and the final result was expressed as the mean of
the two readings (mm). We conducted all the experiments in triplicate.

3.2.14. Statistical Analysis

Statistica v.13 (TIBCO Software, Palo Alto, Santa Clara, CA, USA) was used to per-
form the statistical analysis. The growth inhibition descriptive statistics, including mean,
standard deviation, and coefficient of variation, were calculated.

For the microbiological tests, a one-way ANOVA, followed by a post hoc Tukey’s test
were applied to assess the significance of differences in the growth inhibition between
the applied experimental variants and between the reaction of bacterial species. The
significance level for all tests was predetermined as p < 0.05.

For water content, mechanical properties, and surface colour analysis, the one-way
analysis of variance (ANOVA) Fisher test was carried out (p < 0.05).

4. Conclusions

This study shows that the type of solvent did not play a significant role in the for-
mation of silver nanoparticles, while it had a significant effect on the formation of gold
nanoparticles. SEM/TEM analysis confirmed the successful incorporation of both AuNPs
and AgNPs into the hyaluronic acid matrix. This study demonstrated that the applica-
tion of plasma-treated water had a significant effect on the size and distribution of metal
nanoparticles. Silver nanoparticles ranging from 5 to 25 nm were obtained, while the
size of gold nanoparticles varied from 10 to 35 nm. The electron microscopy observations
correlated with the UV-Vis spectroscopy results.

We did not observe any significant changes in the FTIR-ATR spectra of the composites
compared to that of hyaluronic acid, indicating that the generation of metallic nanoparticles
had no significant effect on the chemical structure of the biopolymer.

The presence of AgNPs significantly improved the mechanical properties of the bio-
nanocomposites obtained compared to commonly used synthetic polymers.

All the obtained biocomposites containing silver and gold nanoparticles exhibited
antimicrobial properties. Among all the composites tested, films containing AgNPs and
AuNPs generated in plasma-treated water in an argon atmosphere stood out. AgNPs were
more effective against Gram-negative bacteria, and samples containing AuNPs were more
effective against Gram-positive S. aureus.

Plasma-treated water, saturated with various gases, can produce materials with diverse
properties, unaffected by chemical compounds or alterations to production processes
and equipment.
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oil, graphene, and nanosilver against bacteria that infect wounds in dogs and cats (Agreement No.
SKN/SP/569551/2023).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
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Antibacterial Properties of Biodegradable Silver Nanoparticle Foils Based on Various Strains of Pathogenic Bacteria Isolated from
The Oral Cavity of Cats, Dogs and Horses. Materials 2022, 15, 1269. [CrossRef] [PubMed]

39. Dheyab, M.A.; Aziz, A.A.; Khaniabadi, P.M.; Jameel, M.S.; Oladzadabbasabadi, N.; Mohammed, S.A.; Abdullah, R.S.; Mehrdel, B.
Monodisperse Gold Nanoparticles: A Review on Synthesis and Their Application in Modern Medicine. Int. J. Mol. Sci. 2022,
23, 7400. [CrossRef]

40. Bialopiotrowicz, T.; Ciesielski, W.; Domanski, J.; Doskocz, M.; Khachatryan, K.; Fiedorowicz, M.; Graz, K.; Koloczek, H.; Kozak,
A.; Oszczeda, Z.; et al. Structure and Physicochemical Properties of Water Treated w ith Low-Temperature Low-Frequency Glow
Plasma. Curr. Phys. Chem. 2016, 6, 312–320. [CrossRef]

41. Chwastowski, J.; Ciesielska, K.; Ciesielski, W.; Khachatryan, K.; Kołoczek, H.; Kulawik, D.; Oszczeda, Z.; Tomasik, P.; Witczak, M.;
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cal and functional properties of water treated under ammonia with low-temperature low-pressure glow plasma of low frequency.
Open Chem. 2020, 18, 1195–1206. [CrossRef]

45. Ciesielska, A.; Ciesielski, W.; Khachatryan, K.; Koloczek, H.; Kulawik, D.; Oszczeda, Z.Z.; Soroka, J.; Tomasik, P. Structure and
Physicochemical Properties of Water Treated under Carbon Dioxide with Low-Temperature Low-Pressure Glow Plasma of Low
Frequency. Water 2020, 12, 1920. [CrossRef]
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